1 | // |
---|
2 | // Lol Engine |
---|
3 | // |
---|
4 | // Copyright: (c) 2010-2013 Sam Hocevar <sam@hocevar.net> |
---|
5 | // This program is free software; you can redistribute it and/or |
---|
6 | // modify it under the terms of the Do What The Fuck You Want To |
---|
7 | // Public License, Version 2, as published by Sam Hocevar. See |
---|
8 | // http://www.wtfpl.net/ for more details. |
---|
9 | // |
---|
10 | |
---|
11 | #if defined HAVE_CONFIG_H |
---|
12 | # include "config.h" |
---|
13 | #endif |
---|
14 | |
---|
15 | #if defined _XBOX |
---|
16 | # define _USE_MATH_DEFINES /* for M_PI */ |
---|
17 | # include <xtl.h> |
---|
18 | # undef near /* Fuck Microsoft */ |
---|
19 | # undef far /* Fuck Microsoft again */ |
---|
20 | #elif defined WIN32 |
---|
21 | # define _USE_MATH_DEFINES /* for M_PI */ |
---|
22 | # define WIN32_LEAN_AND_MEAN |
---|
23 | # include <windows.h> |
---|
24 | # undef near /* Fuck Microsoft */ |
---|
25 | # undef far /* Fuck Microsoft again */ |
---|
26 | #endif |
---|
27 | |
---|
28 | #include <new> |
---|
29 | #include <cstring> |
---|
30 | #include <cstdio> |
---|
31 | #include <cstdlib> |
---|
32 | |
---|
33 | #include "core.h" |
---|
34 | |
---|
35 | using namespace std; |
---|
36 | |
---|
37 | namespace lol |
---|
38 | { |
---|
39 | |
---|
40 | /* |
---|
41 | * First handle explicit specialisation of our templates. |
---|
42 | * |
---|
43 | * Initialisation order is not important because everything is |
---|
44 | * done on demand, but here is the dependency list anyway: |
---|
45 | * - fast_log() requires R_1 |
---|
46 | * - log() requires R_LN2 |
---|
47 | * - re() require R_2 |
---|
48 | * - exp() requires R_0, R_1, R_LN2 |
---|
49 | * - sqrt() requires R_3 |
---|
50 | */ |
---|
51 | |
---|
52 | static real fast_log(real const &x); |
---|
53 | static real fast_pi(); |
---|
54 | |
---|
55 | #define LOL_CONSTANT_GETTER(name, value) \ |
---|
56 | template<> real const& real::name() \ |
---|
57 | { \ |
---|
58 | static real const ret = value; \ |
---|
59 | return ret; \ |
---|
60 | } |
---|
61 | |
---|
62 | LOL_CONSTANT_GETTER(R_0, (real)0.0); |
---|
63 | LOL_CONSTANT_GETTER(R_1, (real)1.0); |
---|
64 | LOL_CONSTANT_GETTER(R_2, (real)2.0); |
---|
65 | LOL_CONSTANT_GETTER(R_3, (real)3.0); |
---|
66 | LOL_CONSTANT_GETTER(R_10, (real)10.0); |
---|
67 | |
---|
68 | LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2())); |
---|
69 | LOL_CONSTANT_GETTER(R_LN10, log(R_10())); |
---|
70 | LOL_CONSTANT_GETTER(R_LOG2E, re(R_LN2())); |
---|
71 | LOL_CONSTANT_GETTER(R_LOG10E, re(R_LN10())); |
---|
72 | LOL_CONSTANT_GETTER(R_E, exp(R_1())); |
---|
73 | LOL_CONSTANT_GETTER(R_PI, fast_pi()); |
---|
74 | LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2); |
---|
75 | LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3()); |
---|
76 | LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4); |
---|
77 | LOL_CONSTANT_GETTER(R_1_PI, re(R_PI())); |
---|
78 | LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2); |
---|
79 | LOL_CONSTANT_GETTER(R_2_SQRTPI, re(sqrt(R_PI())) * 2); |
---|
80 | LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2())); |
---|
81 | LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3())); |
---|
82 | LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2); |
---|
83 | |
---|
84 | #undef LOL_CONSTANT_GETTER |
---|
85 | |
---|
86 | /* |
---|
87 | * Now carry on with the rest of the Real class. |
---|
88 | */ |
---|
89 | |
---|
90 | template<> real::Real() |
---|
91 | { |
---|
92 | m_mantissa = new uint32_t[BIGITS]; |
---|
93 | memset(m_mantissa, 0, BIGITS * sizeof(uint32_t)); |
---|
94 | m_signexp = 0; |
---|
95 | } |
---|
96 | |
---|
97 | template<> real::Real(real const &x) |
---|
98 | { |
---|
99 | m_mantissa = new uint32_t[BIGITS]; |
---|
100 | memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); |
---|
101 | m_signexp = x.m_signexp; |
---|
102 | } |
---|
103 | |
---|
104 | template<> real const &real::operator =(real const &x) |
---|
105 | { |
---|
106 | if (&x != this) |
---|
107 | { |
---|
108 | memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); |
---|
109 | m_signexp = x.m_signexp; |
---|
110 | } |
---|
111 | |
---|
112 | return *this; |
---|
113 | } |
---|
114 | |
---|
115 | template<> real::~Real() |
---|
116 | { |
---|
117 | delete[] m_mantissa; |
---|
118 | } |
---|
119 | |
---|
120 | template<> real::Real(float f) { new(this) real((double)f); } |
---|
121 | template<> real::Real(int i) { new(this) real((double)i); } |
---|
122 | template<> real::Real(unsigned int i) { new(this) real((double)i); } |
---|
123 | |
---|
124 | template<> real::Real(double d) |
---|
125 | { |
---|
126 | new(this) real(); |
---|
127 | |
---|
128 | union { double d; uint64_t x; } u = { d }; |
---|
129 | |
---|
130 | uint32_t sign = (u.x >> 63) << 31; |
---|
131 | uint32_t exponent = (u.x << 1) >> 53; |
---|
132 | |
---|
133 | switch (exponent) |
---|
134 | { |
---|
135 | case 0x00: |
---|
136 | m_signexp = sign; |
---|
137 | break; |
---|
138 | case 0x7ff: |
---|
139 | m_signexp = sign | 0x7fffffffu; |
---|
140 | break; |
---|
141 | default: |
---|
142 | m_signexp = sign | (exponent + (1 << 30) - (1 << 10)); |
---|
143 | break; |
---|
144 | } |
---|
145 | |
---|
146 | m_mantissa[0] = (uint32_t)(u.x >> 20); |
---|
147 | m_mantissa[1] = (uint32_t)(u.x << 12); |
---|
148 | memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0])); |
---|
149 | } |
---|
150 | |
---|
151 | template<> real::operator float() const { return (float)(double)(*this); } |
---|
152 | template<> real::operator int() const { return (int)(double)(*this); } |
---|
153 | template<> real::operator unsigned() const { return (unsigned)(double)(*this); } |
---|
154 | |
---|
155 | template<> real::operator double() const |
---|
156 | { |
---|
157 | union { double d; uint64_t x; } u; |
---|
158 | |
---|
159 | /* Get sign */ |
---|
160 | u.x = m_signexp >> 31; |
---|
161 | u.x <<= 11; |
---|
162 | |
---|
163 | /* Compute new exponent */ |
---|
164 | uint32_t exponent = (m_signexp << 1) >> 1; |
---|
165 | int e = (int)exponent - (1 << 30) + (1 << 10); |
---|
166 | |
---|
167 | if (e < 0) |
---|
168 | u.x <<= 52; |
---|
169 | else if (e >= 0x7ff) |
---|
170 | { |
---|
171 | u.x |= 0x7ff; |
---|
172 | u.x <<= 52; |
---|
173 | } |
---|
174 | else |
---|
175 | { |
---|
176 | u.x |= e; |
---|
177 | |
---|
178 | /* Store mantissa if necessary */ |
---|
179 | u.x <<= 32; |
---|
180 | u.x |= m_mantissa[0]; |
---|
181 | u.x <<= 20; |
---|
182 | u.x |= m_mantissa[1] >> 12; |
---|
183 | /* Rounding */ |
---|
184 | u.x += (m_mantissa[1] >> 11) & 1; |
---|
185 | } |
---|
186 | |
---|
187 | return u.d; |
---|
188 | } |
---|
189 | |
---|
190 | /* |
---|
191 | * Create a real number from an ASCII representation |
---|
192 | */ |
---|
193 | template<> real::Real(char const *str) |
---|
194 | { |
---|
195 | real ret = 0; |
---|
196 | int exponent = 0; |
---|
197 | bool comma = false, nonzero = false, negative = false, finished = false; |
---|
198 | |
---|
199 | for (char const *p = str; *p && !finished; p++) |
---|
200 | { |
---|
201 | switch (*p) |
---|
202 | { |
---|
203 | case '-': |
---|
204 | case '+': |
---|
205 | if (p != str) |
---|
206 | break; |
---|
207 | negative = (*p == '-'); |
---|
208 | break; |
---|
209 | case '.': |
---|
210 | if (comma) |
---|
211 | finished = true; |
---|
212 | comma = true; |
---|
213 | break; |
---|
214 | case '0': case '1': case '2': case '3': case '4': |
---|
215 | case '5': case '6': case '7': case '8': case '9': |
---|
216 | if (nonzero) |
---|
217 | { |
---|
218 | real x = ret + ret; |
---|
219 | x = x + x + ret; |
---|
220 | ret = x + x; |
---|
221 | } |
---|
222 | if (*p != '0') |
---|
223 | { |
---|
224 | ret += (int)(*p - '0'); |
---|
225 | nonzero = true; |
---|
226 | } |
---|
227 | if (comma) |
---|
228 | exponent--; |
---|
229 | break; |
---|
230 | case 'e': |
---|
231 | case 'E': |
---|
232 | exponent += atoi(p + 1); |
---|
233 | finished = true; |
---|
234 | break; |
---|
235 | default: |
---|
236 | finished = true; |
---|
237 | break; |
---|
238 | } |
---|
239 | } |
---|
240 | |
---|
241 | if (exponent) |
---|
242 | ret *= pow(R_10(), (real)exponent); |
---|
243 | |
---|
244 | if (negative) |
---|
245 | ret = -ret; |
---|
246 | |
---|
247 | new(this) real(ret); |
---|
248 | } |
---|
249 | |
---|
250 | template<> real real::operator +() const |
---|
251 | { |
---|
252 | return *this; |
---|
253 | } |
---|
254 | |
---|
255 | template<> real real::operator -() const |
---|
256 | { |
---|
257 | real ret = *this; |
---|
258 | ret.m_signexp ^= 0x80000000u; |
---|
259 | return ret; |
---|
260 | } |
---|
261 | |
---|
262 | template<> real real::operator +(real const &x) const |
---|
263 | { |
---|
264 | if (x.m_signexp << 1 == 0) |
---|
265 | return *this; |
---|
266 | |
---|
267 | /* Ensure both arguments are positive. Otherwise, switch signs, |
---|
268 | * or replace + with -. */ |
---|
269 | if (m_signexp >> 31) |
---|
270 | return -(-*this + -x); |
---|
271 | |
---|
272 | if (x.m_signexp >> 31) |
---|
273 | return *this - (-x); |
---|
274 | |
---|
275 | /* Ensure *this has the larger exponent (no need for the mantissa to |
---|
276 | * be larger, as in subtraction). Otherwise, switch. */ |
---|
277 | if ((m_signexp << 1) < (x.m_signexp << 1)) |
---|
278 | return x + *this; |
---|
279 | |
---|
280 | real ret; |
---|
281 | |
---|
282 | int e1 = m_signexp - (1 << 30) + 1; |
---|
283 | int e2 = x.m_signexp - (1 << 30) + 1; |
---|
284 | |
---|
285 | int bigoff = (e1 - e2) / BIGIT_BITS; |
---|
286 | int off = e1 - e2 - bigoff * BIGIT_BITS; |
---|
287 | |
---|
288 | if (bigoff > BIGITS) |
---|
289 | return *this; |
---|
290 | |
---|
291 | ret.m_signexp = m_signexp; |
---|
292 | |
---|
293 | uint64_t carry = 0; |
---|
294 | for (int i = BIGITS; i--; ) |
---|
295 | { |
---|
296 | carry += m_mantissa[i]; |
---|
297 | if (i - bigoff >= 0) |
---|
298 | carry += x.m_mantissa[i - bigoff] >> off; |
---|
299 | |
---|
300 | if (off && i - bigoff > 0) |
---|
301 | carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu; |
---|
302 | else if (i - bigoff == 0) |
---|
303 | carry += (uint64_t)1 << (BIGIT_BITS - off); |
---|
304 | |
---|
305 | ret.m_mantissa[i] = (uint32_t)carry; |
---|
306 | carry >>= BIGIT_BITS; |
---|
307 | } |
---|
308 | |
---|
309 | /* Renormalise in case we overflowed the mantissa */ |
---|
310 | if (carry) |
---|
311 | { |
---|
312 | carry--; |
---|
313 | for (int i = 0; i < BIGITS; i++) |
---|
314 | { |
---|
315 | uint32_t tmp = ret.m_mantissa[i]; |
---|
316 | ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1)) |
---|
317 | | (tmp >> 1); |
---|
318 | carry = tmp & 1u; |
---|
319 | } |
---|
320 | ret.m_signexp++; |
---|
321 | } |
---|
322 | |
---|
323 | return ret; |
---|
324 | } |
---|
325 | |
---|
326 | template<> real real::operator -(real const &x) const |
---|
327 | { |
---|
328 | if (x.m_signexp << 1 == 0) |
---|
329 | return *this; |
---|
330 | |
---|
331 | /* Ensure both arguments are positive. Otherwise, switch signs, |
---|
332 | * or replace - with +. */ |
---|
333 | if (m_signexp >> 31) |
---|
334 | return -(-*this + x); |
---|
335 | |
---|
336 | if (x.m_signexp >> 31) |
---|
337 | return (*this) + (-x); |
---|
338 | |
---|
339 | /* Ensure *this is larger than x */ |
---|
340 | if (*this < x) |
---|
341 | return -(x - *this); |
---|
342 | |
---|
343 | real ret; |
---|
344 | |
---|
345 | int e1 = m_signexp - (1 << 30) + 1; |
---|
346 | int e2 = x.m_signexp - (1 << 30) + 1; |
---|
347 | |
---|
348 | int bigoff = (e1 - e2) / BIGIT_BITS; |
---|
349 | int off = e1 - e2 - bigoff * BIGIT_BITS; |
---|
350 | |
---|
351 | if (bigoff > BIGITS) |
---|
352 | return *this; |
---|
353 | |
---|
354 | ret.m_signexp = m_signexp; |
---|
355 | |
---|
356 | /* int64_t instead of uint64_t to preserve sign through shifts */ |
---|
357 | int64_t carry = 0; |
---|
358 | for (int i = 0; i < bigoff; i++) |
---|
359 | { |
---|
360 | carry -= x.m_mantissa[BIGITS - 1 - i]; |
---|
361 | /* Emulates a signed shift */ |
---|
362 | carry >>= BIGIT_BITS; |
---|
363 | carry |= carry << BIGIT_BITS; |
---|
364 | } |
---|
365 | if (bigoff < BIGITS) |
---|
366 | carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1); |
---|
367 | carry /= (int64_t)1 << off; |
---|
368 | |
---|
369 | for (int i = BIGITS; i--; ) |
---|
370 | { |
---|
371 | carry += m_mantissa[i]; |
---|
372 | if (i - bigoff >= 0) |
---|
373 | carry -= x.m_mantissa[i - bigoff] >> off; |
---|
374 | |
---|
375 | if (off && i - bigoff > 0) |
---|
376 | carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu; |
---|
377 | else if (i - bigoff == 0) |
---|
378 | carry -= (uint64_t)1 << (BIGIT_BITS - off); |
---|
379 | |
---|
380 | ret.m_mantissa[i] = (uint32_t)carry; |
---|
381 | carry >>= BIGIT_BITS; |
---|
382 | carry |= carry << BIGIT_BITS; |
---|
383 | } |
---|
384 | |
---|
385 | carry += 1; |
---|
386 | |
---|
387 | /* Renormalise if we underflowed the mantissa */ |
---|
388 | if (carry == 0) |
---|
389 | { |
---|
390 | /* How much do we need to shift the mantissa? FIXME: this could |
---|
391 | * be computed above */ |
---|
392 | off = 0; |
---|
393 | for (int i = 0; i < BIGITS; i++) |
---|
394 | { |
---|
395 | if (!ret.m_mantissa[i]) |
---|
396 | { |
---|
397 | off += BIGIT_BITS; |
---|
398 | continue; |
---|
399 | } |
---|
400 | |
---|
401 | for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1) |
---|
402 | off++; |
---|
403 | break; |
---|
404 | } |
---|
405 | if (off == BIGITS * BIGIT_BITS) |
---|
406 | ret.m_signexp &= 0x80000000u; |
---|
407 | else |
---|
408 | { |
---|
409 | off++; /* Shift one more to get rid of the leading one */ |
---|
410 | ret.m_signexp -= off; |
---|
411 | |
---|
412 | bigoff = off / BIGIT_BITS; |
---|
413 | off -= bigoff * BIGIT_BITS; |
---|
414 | |
---|
415 | for (int i = 0; i < BIGITS; i++) |
---|
416 | { |
---|
417 | uint32_t tmp = 0; |
---|
418 | if (i + bigoff < BIGITS) |
---|
419 | tmp |= ret.m_mantissa[i + bigoff] << off; |
---|
420 | if (off && i + bigoff + 1 < BIGITS) |
---|
421 | tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off); |
---|
422 | ret.m_mantissa[i] = tmp; |
---|
423 | } |
---|
424 | } |
---|
425 | } |
---|
426 | |
---|
427 | return ret; |
---|
428 | } |
---|
429 | |
---|
430 | template<> real real::operator *(real const &x) const |
---|
431 | { |
---|
432 | real ret; |
---|
433 | |
---|
434 | if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0) |
---|
435 | { |
---|
436 | ret = (m_signexp << 1 == 0) ? *this : x; |
---|
437 | ret.m_signexp ^= x.m_signexp & 0x80000000u; |
---|
438 | return ret; |
---|
439 | } |
---|
440 | |
---|
441 | ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u; |
---|
442 | int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1 |
---|
443 | + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
---|
444 | |
---|
445 | /* Accumulate low order product; no need to store it, we just |
---|
446 | * want the carry value */ |
---|
447 | uint64_t carry = 0, hicarry = 0, prev; |
---|
448 | for (int i = 0; i < BIGITS; i++) |
---|
449 | { |
---|
450 | for (int j = 0; j < i + 1; j++) |
---|
451 | { |
---|
452 | prev = carry; |
---|
453 | carry += (uint64_t)m_mantissa[BIGITS - 1 - j] |
---|
454 | * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i]; |
---|
455 | if (carry < prev) |
---|
456 | hicarry++; |
---|
457 | } |
---|
458 | carry >>= BIGIT_BITS; |
---|
459 | carry |= hicarry << BIGIT_BITS; |
---|
460 | hicarry >>= BIGIT_BITS; |
---|
461 | } |
---|
462 | |
---|
463 | for (int i = 0; i < BIGITS; i++) |
---|
464 | { |
---|
465 | for (int j = i + 1; j < BIGITS; j++) |
---|
466 | { |
---|
467 | prev = carry; |
---|
468 | carry += (uint64_t)m_mantissa[BIGITS - 1 - j] |
---|
469 | * (uint64_t)x.m_mantissa[j - 1 - i]; |
---|
470 | if (carry < prev) |
---|
471 | hicarry++; |
---|
472 | } |
---|
473 | prev = carry; |
---|
474 | carry += m_mantissa[BIGITS - 1 - i]; |
---|
475 | carry += x.m_mantissa[BIGITS - 1 - i]; |
---|
476 | if (carry < prev) |
---|
477 | hicarry++; |
---|
478 | ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu; |
---|
479 | carry >>= BIGIT_BITS; |
---|
480 | carry |= hicarry << BIGIT_BITS; |
---|
481 | hicarry >>= BIGIT_BITS; |
---|
482 | } |
---|
483 | |
---|
484 | /* Renormalise in case we overflowed the mantissa */ |
---|
485 | if (carry) |
---|
486 | { |
---|
487 | carry--; |
---|
488 | for (int i = 0; i < BIGITS; i++) |
---|
489 | { |
---|
490 | uint32_t tmp = (uint32_t)ret.m_mantissa[i]; |
---|
491 | ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1)) |
---|
492 | | (tmp >> 1); |
---|
493 | carry = tmp & 1u; |
---|
494 | } |
---|
495 | e++; |
---|
496 | } |
---|
497 | |
---|
498 | ret.m_signexp |= e + (1 << 30) - 1; |
---|
499 | |
---|
500 | return ret; |
---|
501 | } |
---|
502 | |
---|
503 | template<> real real::operator /(real const &x) const |
---|
504 | { |
---|
505 | return *this * re(x); |
---|
506 | } |
---|
507 | |
---|
508 | template<> real const &real::operator +=(real const &x) |
---|
509 | { |
---|
510 | real tmp = *this; |
---|
511 | return *this = tmp + x; |
---|
512 | } |
---|
513 | |
---|
514 | template<> real const &real::operator -=(real const &x) |
---|
515 | { |
---|
516 | real tmp = *this; |
---|
517 | return *this = tmp - x; |
---|
518 | } |
---|
519 | |
---|
520 | template<> real const &real::operator *=(real const &x) |
---|
521 | { |
---|
522 | real tmp = *this; |
---|
523 | return *this = tmp * x; |
---|
524 | } |
---|
525 | |
---|
526 | template<> real const &real::operator /=(real const &x) |
---|
527 | { |
---|
528 | real tmp = *this; |
---|
529 | return *this = tmp / x; |
---|
530 | } |
---|
531 | |
---|
532 | template<> bool real::operator ==(real const &x) const |
---|
533 | { |
---|
534 | if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0) |
---|
535 | return true; |
---|
536 | |
---|
537 | if (m_signexp != x.m_signexp) |
---|
538 | return false; |
---|
539 | |
---|
540 | return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0; |
---|
541 | } |
---|
542 | |
---|
543 | template<> bool real::operator !=(real const &x) const |
---|
544 | { |
---|
545 | return !(*this == x); |
---|
546 | } |
---|
547 | |
---|
548 | template<> bool real::operator <(real const &x) const |
---|
549 | { |
---|
550 | /* Ensure both numbers are positive */ |
---|
551 | if (m_signexp >> 31) |
---|
552 | return (x.m_signexp >> 31) ? -*this > -x : true; |
---|
553 | |
---|
554 | if (x.m_signexp >> 31) |
---|
555 | return false; |
---|
556 | |
---|
557 | /* Compare all relevant bits */ |
---|
558 | if (m_signexp != x.m_signexp) |
---|
559 | return m_signexp < x.m_signexp; |
---|
560 | |
---|
561 | for (int i = 0; i < BIGITS; i++) |
---|
562 | if (m_mantissa[i] != x.m_mantissa[i]) |
---|
563 | return m_mantissa[i] < x.m_mantissa[i]; |
---|
564 | |
---|
565 | return false; |
---|
566 | } |
---|
567 | |
---|
568 | template<> bool real::operator <=(real const &x) const |
---|
569 | { |
---|
570 | return !(*this > x); |
---|
571 | } |
---|
572 | |
---|
573 | template<> bool real::operator >(real const &x) const |
---|
574 | { |
---|
575 | /* Ensure both numbers are positive */ |
---|
576 | if (m_signexp >> 31) |
---|
577 | return (x.m_signexp >> 31) ? -*this < -x : false; |
---|
578 | |
---|
579 | if (x.m_signexp >> 31) |
---|
580 | return true; |
---|
581 | |
---|
582 | /* Compare all relevant bits */ |
---|
583 | if (m_signexp != x.m_signexp) |
---|
584 | return m_signexp > x.m_signexp; |
---|
585 | |
---|
586 | for (int i = 0; i < BIGITS; i++) |
---|
587 | if (m_mantissa[i] != x.m_mantissa[i]) |
---|
588 | return m_mantissa[i] > x.m_mantissa[i]; |
---|
589 | |
---|
590 | return false; |
---|
591 | } |
---|
592 | |
---|
593 | template<> bool real::operator >=(real const &x) const |
---|
594 | { |
---|
595 | return !(*this < x); |
---|
596 | } |
---|
597 | |
---|
598 | template<> bool real::operator !() const |
---|
599 | { |
---|
600 | return !(bool)*this; |
---|
601 | } |
---|
602 | |
---|
603 | template<> real::operator bool() const |
---|
604 | { |
---|
605 | /* A real is "true" if it is non-zero (exponent is non-zero) AND |
---|
606 | * not NaN (exponent is not full bits OR higher order mantissa is zero) */ |
---|
607 | uint32_t exponent = m_signexp << 1; |
---|
608 | return exponent && (~exponent || m_mantissa[0] == 0); |
---|
609 | } |
---|
610 | |
---|
611 | template<> real min(real const &a, real const &b) |
---|
612 | { |
---|
613 | return (a < b) ? a : b; |
---|
614 | } |
---|
615 | |
---|
616 | template<> real max(real const &a, real const &b) |
---|
617 | { |
---|
618 | return (a > b) ? a : b; |
---|
619 | } |
---|
620 | |
---|
621 | template<> real clamp(real const &x, real const &a, real const &b) |
---|
622 | { |
---|
623 | return (x < a) ? a : (x > b) ? b : x; |
---|
624 | } |
---|
625 | |
---|
626 | template<> real re(real const &x) |
---|
627 | { |
---|
628 | if (!(x.m_signexp << 1)) |
---|
629 | { |
---|
630 | real ret = x; |
---|
631 | ret.m_signexp = x.m_signexp | 0x7fffffffu; |
---|
632 | ret.m_mantissa[0] = 0; |
---|
633 | return ret; |
---|
634 | } |
---|
635 | |
---|
636 | /* Use the system's float inversion to approximate 1/x */ |
---|
637 | union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; |
---|
638 | v.x |= x.m_mantissa[0] >> 9; |
---|
639 | v.f = 1.0f / v.f; |
---|
640 | |
---|
641 | real ret; |
---|
642 | ret.m_mantissa[0] = v.x << 9; |
---|
643 | |
---|
644 | uint32_t sign = x.m_signexp & 0x80000000u; |
---|
645 | ret.m_signexp = sign; |
---|
646 | |
---|
647 | int exponent = (x.m_signexp & 0x7fffffffu) + 1; |
---|
648 | exponent = -exponent + (v.x >> 23) - (u.x >> 23); |
---|
649 | ret.m_signexp |= (exponent - 1) & 0x7fffffffu; |
---|
650 | |
---|
651 | /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
---|
652 | * convergence, but this hasn't been checked seriously. */ |
---|
653 | for (int i = 1; i <= real::BIGITS; i *= 2) |
---|
654 | ret = ret * (real::R_2() - ret * x); |
---|
655 | |
---|
656 | return ret; |
---|
657 | } |
---|
658 | |
---|
659 | template<> real sqrt(real const &x) |
---|
660 | { |
---|
661 | /* if zero, return x */ |
---|
662 | if (!(x.m_signexp << 1)) |
---|
663 | return x; |
---|
664 | |
---|
665 | /* if negative, return NaN */ |
---|
666 | if (x.m_signexp >> 31) |
---|
667 | { |
---|
668 | real ret; |
---|
669 | ret.m_signexp = 0x7fffffffu; |
---|
670 | ret.m_mantissa[0] = 0xffffu; |
---|
671 | return ret; |
---|
672 | } |
---|
673 | |
---|
674 | /* Use the system's float inversion to approximate 1/sqrt(x). First |
---|
675 | * we construct a float in the [1..4[ range that has roughly the same |
---|
676 | * mantissa as our real. Its exponent is 0 or 1, depending on the |
---|
677 | * partity of x. The final exponent is 0, -1 or -2. We use the final |
---|
678 | * exponent and final mantissa to pre-fill the result. */ |
---|
679 | union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f }; |
---|
680 | v.x -= ((x.m_signexp & 1) << 23); |
---|
681 | v.x |= x.m_mantissa[0] >> 9; |
---|
682 | v.f = 1.0f / sqrtf(v.f); |
---|
683 | |
---|
684 | real ret; |
---|
685 | ret.m_mantissa[0] = v.x << 9; |
---|
686 | |
---|
687 | uint32_t sign = x.m_signexp & 0x80000000u; |
---|
688 | ret.m_signexp = sign; |
---|
689 | |
---|
690 | uint32_t exponent = (x.m_signexp & 0x7fffffffu); |
---|
691 | exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2; |
---|
692 | exponent = exponent + (v.x >> 23) - (u.x >> 23); |
---|
693 | ret.m_signexp |= exponent & 0x7fffffffu; |
---|
694 | |
---|
695 | /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
---|
696 | * convergence, but this hasn't been checked seriously. */ |
---|
697 | for (int i = 1; i <= real::BIGITS; i *= 2) |
---|
698 | { |
---|
699 | ret = ret * (real::R_3() - ret * ret * x); |
---|
700 | ret.m_signexp--; |
---|
701 | } |
---|
702 | |
---|
703 | return ret * x; |
---|
704 | } |
---|
705 | |
---|
706 | template<> real cbrt(real const &x) |
---|
707 | { |
---|
708 | /* if zero, return x */ |
---|
709 | if (!(x.m_signexp << 1)) |
---|
710 | return x; |
---|
711 | |
---|
712 | /* Use the system's float inversion to approximate cbrt(x). First |
---|
713 | * we construct a float in the [1..8[ range that has roughly the same |
---|
714 | * mantissa as our real. Its exponent is 0, 1 or 2, depending on the |
---|
715 | * value of x. The final exponent is 0 or 1 (special case). We use |
---|
716 | * the final exponent and final mantissa to pre-fill the result. */ |
---|
717 | union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; |
---|
718 | v.x += ((x.m_signexp % 3) << 23); |
---|
719 | v.x |= x.m_mantissa[0] >> 9; |
---|
720 | v.f = powf(v.f, 0.33333333333333333f); |
---|
721 | |
---|
722 | real ret; |
---|
723 | ret.m_mantissa[0] = v.x << 9; |
---|
724 | |
---|
725 | uint32_t sign = x.m_signexp & 0x80000000u; |
---|
726 | ret.m_signexp = sign; |
---|
727 | |
---|
728 | int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
---|
729 | exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23); |
---|
730 | ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu; |
---|
731 | |
---|
732 | /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
---|
733 | * convergence, but this hasn't been checked seriously. */ |
---|
734 | for (int i = 1; i <= real::BIGITS; i *= 2) |
---|
735 | { |
---|
736 | static real third = re(real::R_3()); |
---|
737 | ret = third * (x / (ret * ret) + (ret / 2)); |
---|
738 | } |
---|
739 | |
---|
740 | return ret; |
---|
741 | } |
---|
742 | |
---|
743 | template<> real pow(real const &x, real const &y) |
---|
744 | { |
---|
745 | if (!y) |
---|
746 | return real::R_1(); |
---|
747 | if (!x) |
---|
748 | return real::R_0(); |
---|
749 | if (x > real::R_0()) |
---|
750 | return exp(y * log(x)); |
---|
751 | else /* x < 0 */ |
---|
752 | { |
---|
753 | /* Odd integer exponent */ |
---|
754 | if (y == (round(y / 2) * 2)) |
---|
755 | return exp(y * log(-x)); |
---|
756 | |
---|
757 | /* Even integer exponent */ |
---|
758 | if (y == round(y)) |
---|
759 | return -exp(y * log(-x)); |
---|
760 | |
---|
761 | /* FIXME: negative nth root */ |
---|
762 | return real::R_0(); |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | static real fast_fact(unsigned int x) |
---|
767 | { |
---|
768 | real ret = real::R_1(); |
---|
769 | unsigned int i = 1, multiplier = 1, exponent = 0; |
---|
770 | |
---|
771 | for (;;) |
---|
772 | { |
---|
773 | if (i++ >= x) |
---|
774 | /* Multiplication is a no-op if multiplier == 1 */ |
---|
775 | return ldexp(ret * multiplier, exponent); |
---|
776 | |
---|
777 | unsigned int tmp = i; |
---|
778 | while ((tmp & 1) == 0) |
---|
779 | { |
---|
780 | tmp >>= 1; |
---|
781 | exponent++; |
---|
782 | } |
---|
783 | if (multiplier * tmp / tmp != multiplier) |
---|
784 | { |
---|
785 | ret *= multiplier; |
---|
786 | multiplier = 1; |
---|
787 | } |
---|
788 | multiplier *= tmp; |
---|
789 | } |
---|
790 | } |
---|
791 | |
---|
792 | template<> real gamma(real const &x) |
---|
793 | { |
---|
794 | /* We use Spouge's formula. FIXME: precision is far from acceptable, |
---|
795 | * especially with large values. We need to compute this with higher |
---|
796 | * precision values in order to attain the desired accuracy. It might |
---|
797 | * also be useful to sort the ck values by decreasing absolute value |
---|
798 | * and do the addition in this order. */ |
---|
799 | int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS); |
---|
800 | |
---|
801 | real ret = sqrt(real::R_PI() * 2); |
---|
802 | real fact_k_1 = real::R_1(); |
---|
803 | |
---|
804 | for (int k = 1; k < a; k++) |
---|
805 | { |
---|
806 | real a_k = (real)(a - k); |
---|
807 | real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k) |
---|
808 | / (fact_k_1 * (x + (real)(k - 1))); |
---|
809 | ret += ck; |
---|
810 | fact_k_1 *= (real)-k; |
---|
811 | } |
---|
812 | |
---|
813 | ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2)); |
---|
814 | ret *= exp(-x - (real)(a - 1)); |
---|
815 | |
---|
816 | return ret; |
---|
817 | } |
---|
818 | |
---|
819 | template<> real fabs(real const &x) |
---|
820 | { |
---|
821 | real ret = x; |
---|
822 | ret.m_signexp &= 0x7fffffffu; |
---|
823 | return ret; |
---|
824 | } |
---|
825 | |
---|
826 | template<> real abs(real const &x) |
---|
827 | { |
---|
828 | return fabs(x); |
---|
829 | } |
---|
830 | |
---|
831 | template<> real fract(real const &x) |
---|
832 | { |
---|
833 | return x - floor(x); |
---|
834 | } |
---|
835 | |
---|
836 | static real fast_log(real const &x) |
---|
837 | { |
---|
838 | /* This fast log method is tuned to work on the [1..2] range and |
---|
839 | * no effort whatsoever was made to improve convergence outside this |
---|
840 | * domain of validity. It can converge pretty fast, provided we use |
---|
841 | * the following variable substitutions: |
---|
842 | * y = sqrt(x) |
---|
843 | * z = (y - 1) / (y + 1) |
---|
844 | * |
---|
845 | * And the following identities: |
---|
846 | * ln(x) = 2 ln(y) |
---|
847 | * = 2 ln((1 + z) / (1 - z)) |
---|
848 | * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...) |
---|
849 | * |
---|
850 | * Any additional sqrt() call would halve the convergence time, but |
---|
851 | * would also impact the final precision. For now we stick with one |
---|
852 | * sqrt() call. */ |
---|
853 | real y = sqrt(x); |
---|
854 | real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2; |
---|
855 | real sum = real::R_1(); |
---|
856 | |
---|
857 | for (int i = 3; ; i += 2) |
---|
858 | { |
---|
859 | real newsum = sum + zn / (real)i; |
---|
860 | if (newsum == sum) |
---|
861 | break; |
---|
862 | sum = newsum; |
---|
863 | zn *= z2; |
---|
864 | } |
---|
865 | |
---|
866 | return z * sum * 4; |
---|
867 | } |
---|
868 | |
---|
869 | template<> real log(real const &x) |
---|
870 | { |
---|
871 | /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M), |
---|
872 | * with the property that M is in [1..2[, so fast_log() applies here. */ |
---|
873 | real tmp = x; |
---|
874 | if (x.m_signexp >> 31 || x.m_signexp == 0) |
---|
875 | { |
---|
876 | tmp.m_signexp = 0xffffffffu; |
---|
877 | tmp.m_mantissa[0] = 0xffffffffu; |
---|
878 | return tmp; |
---|
879 | } |
---|
880 | tmp.m_signexp = (1 << 30) - 1; |
---|
881 | return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2() |
---|
882 | + fast_log(tmp); |
---|
883 | } |
---|
884 | |
---|
885 | template<> real log2(real const &x) |
---|
886 | { |
---|
887 | /* Strategy for log2(x): see log(x). */ |
---|
888 | real tmp = x; |
---|
889 | if (x.m_signexp >> 31 || x.m_signexp == 0) |
---|
890 | { |
---|
891 | tmp.m_signexp = 0xffffffffu; |
---|
892 | tmp.m_mantissa[0] = 0xffffffffu; |
---|
893 | return tmp; |
---|
894 | } |
---|
895 | tmp.m_signexp = (1 << 30) - 1; |
---|
896 | return (real)(int)(x.m_signexp - (1 << 30) + 1) |
---|
897 | + fast_log(tmp) * real::R_LOG2E(); |
---|
898 | } |
---|
899 | |
---|
900 | template<> real log10(real const &x) |
---|
901 | { |
---|
902 | return log(x) * real::R_LOG10E(); |
---|
903 | } |
---|
904 | |
---|
905 | static real fast_exp_sub(real const &x, real const &y) |
---|
906 | { |
---|
907 | /* This fast exp method is tuned to work on the [-1..1] range and |
---|
908 | * no effort whatsoever was made to improve convergence outside this |
---|
909 | * domain of validity. The argument y is used for cases where we |
---|
910 | * don't want the leading 1 in the Taylor series. */ |
---|
911 | real ret = real::R_1() - y, xn = x; |
---|
912 | int i = 1; |
---|
913 | |
---|
914 | for (;;) |
---|
915 | { |
---|
916 | real newret = ret + xn; |
---|
917 | if (newret == ret) |
---|
918 | break; |
---|
919 | ret = newret * ++i; |
---|
920 | xn *= x; |
---|
921 | } |
---|
922 | |
---|
923 | return ret / fast_fact(i); |
---|
924 | } |
---|
925 | |
---|
926 | template<> real exp(real const &x) |
---|
927 | { |
---|
928 | /* Strategy for exp(x): the Taylor series does not converge very fast |
---|
929 | * with large positive or negative values. |
---|
930 | * |
---|
931 | * However, we know that the result is going to be in the form M*2^E, |
---|
932 | * where M is the mantissa and E the exponent. We first try to predict |
---|
933 | * a value for E, which is approximately log2(exp(x)) = x / log(2). |
---|
934 | * |
---|
935 | * Let E0 be an integer close to x / log(2). We need to find a value x0 |
---|
936 | * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2). |
---|
937 | * |
---|
938 | * Thus the final algorithm: |
---|
939 | * int E0 = x / log(2) |
---|
940 | * real x0 = x - E0 log(2) |
---|
941 | * real x1 = exp(x0) |
---|
942 | * return x1 * 2^E0 |
---|
943 | */ |
---|
944 | int e0 = x / real::R_LN2(); |
---|
945 | real x0 = x - (real)e0 * real::R_LN2(); |
---|
946 | real x1 = fast_exp_sub(x0, real::R_0()); |
---|
947 | x1.m_signexp += e0; |
---|
948 | return x1; |
---|
949 | } |
---|
950 | |
---|
951 | template<> real exp2(real const &x) |
---|
952 | { |
---|
953 | /* Strategy for exp2(x): see strategy in exp(). */ |
---|
954 | int e0 = x; |
---|
955 | real x0 = x - (real)e0; |
---|
956 | real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0()); |
---|
957 | x1.m_signexp += e0; |
---|
958 | return x1; |
---|
959 | } |
---|
960 | |
---|
961 | template<> real sinh(real const &x) |
---|
962 | { |
---|
963 | /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose |
---|
964 | * accuracy near zero. We only use this identity for |x|>0.5. If |
---|
965 | * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */ |
---|
966 | bool near_zero = (fabs(x) < real::R_1() / 2); |
---|
967 | real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x); |
---|
968 | real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x); |
---|
969 | return (x1 - x2) / 2; |
---|
970 | } |
---|
971 | |
---|
972 | template<> real tanh(real const &x) |
---|
973 | { |
---|
974 | /* See sinh() for the strategy here */ |
---|
975 | bool near_zero = (fabs(x) < real::R_1() / 2); |
---|
976 | real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x); |
---|
977 | real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x); |
---|
978 | real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2; |
---|
979 | return (x1 - x2) / x3; |
---|
980 | } |
---|
981 | |
---|
982 | template<> real cosh(real const &x) |
---|
983 | { |
---|
984 | /* No need to worry about accuracy here; maybe the last bit is slightly |
---|
985 | * off, but that's about it. */ |
---|
986 | return (exp(x) + exp(-x)) / 2; |
---|
987 | } |
---|
988 | |
---|
989 | template<> real frexp(real const &x, int *exp) |
---|
990 | { |
---|
991 | if (!x) |
---|
992 | { |
---|
993 | *exp = 0; |
---|
994 | return x; |
---|
995 | } |
---|
996 | |
---|
997 | real ret = x; |
---|
998 | int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
---|
999 | *exp = exponent + 1; |
---|
1000 | ret.m_signexp -= exponent + 1; |
---|
1001 | return ret; |
---|
1002 | } |
---|
1003 | |
---|
1004 | template<> real ldexp(real const &x, int exp) |
---|
1005 | { |
---|
1006 | real ret = x; |
---|
1007 | if (ret) |
---|
1008 | ret.m_signexp += exp; |
---|
1009 | return ret; |
---|
1010 | } |
---|
1011 | |
---|
1012 | template<> real modf(real const &x, real *iptr) |
---|
1013 | { |
---|
1014 | real absx = fabs(x); |
---|
1015 | real tmp = floor(absx); |
---|
1016 | |
---|
1017 | *iptr = copysign(tmp, x); |
---|
1018 | return copysign(absx - tmp, x); |
---|
1019 | } |
---|
1020 | |
---|
1021 | template<> real ulp(real const &x) |
---|
1022 | { |
---|
1023 | real ret = real::R_1(); |
---|
1024 | if (x) |
---|
1025 | ret.m_signexp = x.m_signexp + 1 - real::BIGITS * real::BIGIT_BITS; |
---|
1026 | else |
---|
1027 | ret.m_signexp = 0; |
---|
1028 | return ret; |
---|
1029 | } |
---|
1030 | |
---|
1031 | template<> real nextafter(real const &x, real const &y) |
---|
1032 | { |
---|
1033 | if (x == y) |
---|
1034 | return x; |
---|
1035 | else if (x < y) |
---|
1036 | return x + ulp(x); |
---|
1037 | else |
---|
1038 | return x - ulp(x); |
---|
1039 | } |
---|
1040 | |
---|
1041 | template<> real copysign(real const &x, real const &y) |
---|
1042 | { |
---|
1043 | real ret = x; |
---|
1044 | ret.m_signexp &= 0x7fffffffu; |
---|
1045 | ret.m_signexp |= y.m_signexp & 0x80000000u; |
---|
1046 | return ret; |
---|
1047 | } |
---|
1048 | |
---|
1049 | template<> real floor(real const &x) |
---|
1050 | { |
---|
1051 | /* Strategy for floor(x): |
---|
1052 | * - if negative, return -ceil(-x) |
---|
1053 | * - if zero or negative zero, return x |
---|
1054 | * - if less than one, return zero |
---|
1055 | * - otherwise, if e is the exponent, clear all bits except the |
---|
1056 | * first e. */ |
---|
1057 | if (x < -real::R_0()) |
---|
1058 | return -ceil(-x); |
---|
1059 | if (!x) |
---|
1060 | return x; |
---|
1061 | if (x < real::R_1()) |
---|
1062 | return real::R_0(); |
---|
1063 | |
---|
1064 | real ret = x; |
---|
1065 | int exponent = x.m_signexp - (1 << 30) + 1; |
---|
1066 | |
---|
1067 | for (int i = 0; i < real::BIGITS; i++) |
---|
1068 | { |
---|
1069 | if (exponent <= 0) |
---|
1070 | ret.m_mantissa[i] = 0; |
---|
1071 | else if (exponent < real::BIGIT_BITS) |
---|
1072 | ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1); |
---|
1073 | |
---|
1074 | exponent -= real::BIGIT_BITS; |
---|
1075 | } |
---|
1076 | |
---|
1077 | return ret; |
---|
1078 | } |
---|
1079 | |
---|
1080 | template<> real ceil(real const &x) |
---|
1081 | { |
---|
1082 | /* Strategy for ceil(x): |
---|
1083 | * - if negative, return -floor(-x) |
---|
1084 | * - if x == floor(x), return x |
---|
1085 | * - otherwise, return floor(x) + 1 */ |
---|
1086 | if (x < -real::R_0()) |
---|
1087 | return -floor(-x); |
---|
1088 | real ret = floor(x); |
---|
1089 | if (x == ret) |
---|
1090 | return ret; |
---|
1091 | else |
---|
1092 | return ret + real::R_1(); |
---|
1093 | } |
---|
1094 | |
---|
1095 | template<> real round(real const &x) |
---|
1096 | { |
---|
1097 | if (x < real::R_0()) |
---|
1098 | return -round(-x); |
---|
1099 | |
---|
1100 | return floor(x + (real::R_1() / 2)); |
---|
1101 | } |
---|
1102 | |
---|
1103 | template<> real fmod(real const &x, real const &y) |
---|
1104 | { |
---|
1105 | if (!y) |
---|
1106 | return real::R_0(); /* FIXME: return NaN */ |
---|
1107 | |
---|
1108 | if (!x) |
---|
1109 | return x; |
---|
1110 | |
---|
1111 | real tmp = round(x / y); |
---|
1112 | return x - tmp * y; |
---|
1113 | } |
---|
1114 | |
---|
1115 | template<> real sin(real const &x) |
---|
1116 | { |
---|
1117 | int switch_sign = x.m_signexp & 0x80000000u; |
---|
1118 | |
---|
1119 | real absx = fmod(fabs(x), real::R_PI() * 2); |
---|
1120 | if (absx > real::R_PI()) |
---|
1121 | { |
---|
1122 | absx -= real::R_PI(); |
---|
1123 | switch_sign = !switch_sign; |
---|
1124 | } |
---|
1125 | |
---|
1126 | if (absx > real::R_PI_2()) |
---|
1127 | absx = real::R_PI() - absx; |
---|
1128 | |
---|
1129 | real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx; |
---|
1130 | int i = 1; |
---|
1131 | for (;;) |
---|
1132 | { |
---|
1133 | real newret = ret + xn; |
---|
1134 | if (newret == ret) |
---|
1135 | break; |
---|
1136 | ret = newret * ((i + 1) * (i + 2)); |
---|
1137 | xn *= mx2; |
---|
1138 | i += 2; |
---|
1139 | } |
---|
1140 | ret /= fast_fact(i); |
---|
1141 | |
---|
1142 | /* Propagate sign */ |
---|
1143 | if (switch_sign) |
---|
1144 | ret.m_signexp ^= 0x80000000u; |
---|
1145 | return ret; |
---|
1146 | } |
---|
1147 | |
---|
1148 | template<> real cos(real const &x) |
---|
1149 | { |
---|
1150 | return sin(real::R_PI_2() - x); |
---|
1151 | } |
---|
1152 | |
---|
1153 | template<> real tan(real const &x) |
---|
1154 | { |
---|
1155 | /* Constrain input to [-π,π] */ |
---|
1156 | real y = fmod(x, real::R_PI()); |
---|
1157 | |
---|
1158 | /* Constrain input to [-π/2,π/2] */ |
---|
1159 | if (y < -real::R_PI_2()) |
---|
1160 | y += real::R_PI(); |
---|
1161 | else if (y > real::R_PI_2()) |
---|
1162 | y -= real::R_PI(); |
---|
1163 | |
---|
1164 | /* In [-π/4,π/4] return sin/cos */ |
---|
1165 | if (fabs(y) <= real::R_PI_4()) |
---|
1166 | return sin(y) / cos(y); |
---|
1167 | |
---|
1168 | /* Otherwise, return cos/sin */ |
---|
1169 | if (y > real::R_0()) |
---|
1170 | y = real::R_PI_2() - y; |
---|
1171 | else |
---|
1172 | y = -real::R_PI_2() - y; |
---|
1173 | |
---|
1174 | return cos(y) / sin(y); |
---|
1175 | } |
---|
1176 | |
---|
1177 | static inline real asinacos(real const &x, int is_asin, int is_negative) |
---|
1178 | { |
---|
1179 | /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around |
---|
1180 | * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and |
---|
1181 | * in [-1..-0.5] just revert the sign. |
---|
1182 | * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to |
---|
1183 | * lose the precision around x=1. */ |
---|
1184 | real absx = fabs(x); |
---|
1185 | int around_zero = (absx < (real::R_1() / 2)); |
---|
1186 | |
---|
1187 | if (!around_zero) |
---|
1188 | absx = sqrt((real::R_1() - absx) / 2); |
---|
1189 | |
---|
1190 | real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1; |
---|
1191 | for (int i = 1; ; i++) |
---|
1192 | { |
---|
1193 | xn *= x2; |
---|
1194 | real mul = (real)(2 * i + 1); |
---|
1195 | real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i); |
---|
1196 | if (newret == ret) |
---|
1197 | break; |
---|
1198 | ret = newret; |
---|
1199 | fact1 *= (real)((2 * i + 1) * (2 * i + 2)); |
---|
1200 | fact2 *= (real)((i + 1) * (i + 1)); |
---|
1201 | } |
---|
1202 | |
---|
1203 | if (is_negative) |
---|
1204 | ret = -ret; |
---|
1205 | |
---|
1206 | if (around_zero) |
---|
1207 | ret = is_asin ? ret : real::R_PI_2() - ret; |
---|
1208 | else |
---|
1209 | { |
---|
1210 | real adjust = is_negative ? real::R_PI() : real::R_0(); |
---|
1211 | if (is_asin) |
---|
1212 | ret = real::R_PI_2() - adjust - ret * 2; |
---|
1213 | else |
---|
1214 | ret = adjust + ret * 2; |
---|
1215 | } |
---|
1216 | |
---|
1217 | return ret; |
---|
1218 | } |
---|
1219 | |
---|
1220 | template<> real asin(real const &x) |
---|
1221 | { |
---|
1222 | return asinacos(x, 1, x.m_signexp >> 31); |
---|
1223 | } |
---|
1224 | |
---|
1225 | template<> real acos(real const &x) |
---|
1226 | { |
---|
1227 | return asinacos(x, 0, x.m_signexp >> 31); |
---|
1228 | } |
---|
1229 | |
---|
1230 | template<> real atan(real const &x) |
---|
1231 | { |
---|
1232 | /* Computing atan(x): we choose a different Taylor series depending on |
---|
1233 | * the value of x to help with convergence. |
---|
1234 | * |
---|
1235 | * If |x| < 0.5 we evaluate atan(y) near 0: |
---|
1236 | * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ... |
---|
1237 | * |
---|
1238 | * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0: |
---|
1239 | * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2) |
---|
1240 | * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4) |
---|
1241 | * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ... |
---|
1242 | * |
---|
1243 | * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0: |
---|
1244 | * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2 |
---|
1245 | * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5 |
---|
1246 | * - 1/2 y^7/7 + sqrt(3)/2 y^8/8 |
---|
1247 | * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11 |
---|
1248 | * + 1/2 y^13/13 - sqrt(3)/2 y^14/14 |
---|
1249 | * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ... |
---|
1250 | * |
---|
1251 | * If |x| >= 2 we evaluate atan(y) near +∞: |
---|
1252 | * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ... |
---|
1253 | */ |
---|
1254 | real absx = fabs(x); |
---|
1255 | |
---|
1256 | if (absx < (real::R_1() / 2)) |
---|
1257 | { |
---|
1258 | real ret = x, xn = x, mx2 = -x * x; |
---|
1259 | for (int i = 3; ; i += 2) |
---|
1260 | { |
---|
1261 | xn *= mx2; |
---|
1262 | real newret = ret + xn / (real)i; |
---|
1263 | if (newret == ret) |
---|
1264 | break; |
---|
1265 | ret = newret; |
---|
1266 | } |
---|
1267 | return ret; |
---|
1268 | } |
---|
1269 | |
---|
1270 | real ret = 0; |
---|
1271 | |
---|
1272 | if (absx < (real::R_3() / 2)) |
---|
1273 | { |
---|
1274 | real y = real::R_1() - absx; |
---|
1275 | real yn = y, my2 = -y * y; |
---|
1276 | for (int i = 0; ; i += 2) |
---|
1277 | { |
---|
1278 | real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1); |
---|
1279 | yn *= y; |
---|
1280 | newret += ldexp(yn / (real)(2 * i + 2), -i - 1); |
---|
1281 | yn *= y; |
---|
1282 | newret += ldexp(yn / (real)(2 * i + 3), -i - 2); |
---|
1283 | if (newret == ret) |
---|
1284 | break; |
---|
1285 | ret = newret; |
---|
1286 | yn *= my2; |
---|
1287 | } |
---|
1288 | ret = real::R_PI_4() - ret; |
---|
1289 | } |
---|
1290 | else if (absx < real::R_2()) |
---|
1291 | { |
---|
1292 | real y = (absx - real::R_SQRT3()) / 2; |
---|
1293 | real yn = y, my2 = -y * y; |
---|
1294 | for (int i = 1; ; i += 6) |
---|
1295 | { |
---|
1296 | real newret = ret + ((yn / (real)i) / 2); |
---|
1297 | yn *= y; |
---|
1298 | newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1); |
---|
1299 | yn *= y; |
---|
1300 | newret += yn / (real)(i + 2); |
---|
1301 | yn *= y; |
---|
1302 | newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3); |
---|
1303 | yn *= y; |
---|
1304 | newret += (yn / (real)(i + 4)) / 2; |
---|
1305 | if (newret == ret) |
---|
1306 | break; |
---|
1307 | ret = newret; |
---|
1308 | yn *= my2; |
---|
1309 | } |
---|
1310 | ret = real::R_PI_3() + ret; |
---|
1311 | } |
---|
1312 | else |
---|
1313 | { |
---|
1314 | real y = re(absx); |
---|
1315 | real yn = y, my2 = -y * y; |
---|
1316 | ret = y; |
---|
1317 | for (int i = 3; ; i += 2) |
---|
1318 | { |
---|
1319 | yn *= my2; |
---|
1320 | real newret = ret + yn / (real)i; |
---|
1321 | if (newret == ret) |
---|
1322 | break; |
---|
1323 | ret = newret; |
---|
1324 | } |
---|
1325 | ret = real::R_PI_2() - ret; |
---|
1326 | } |
---|
1327 | |
---|
1328 | /* Propagate sign */ |
---|
1329 | ret.m_signexp |= (x.m_signexp & 0x80000000u); |
---|
1330 | return ret; |
---|
1331 | } |
---|
1332 | |
---|
1333 | template<> real atan2(real const &y, real const &x) |
---|
1334 | { |
---|
1335 | if (!y) |
---|
1336 | { |
---|
1337 | if ((x.m_signexp >> 31) == 0) |
---|
1338 | return y; |
---|
1339 | if (y.m_signexp >> 31) |
---|
1340 | return -real::R_PI(); |
---|
1341 | return real::R_PI(); |
---|
1342 | } |
---|
1343 | |
---|
1344 | if (!x) |
---|
1345 | { |
---|
1346 | if (y.m_signexp >> 31) |
---|
1347 | return -real::R_PI(); |
---|
1348 | return real::R_PI(); |
---|
1349 | } |
---|
1350 | |
---|
1351 | /* FIXME: handle the Inf and NaN cases */ |
---|
1352 | real z = y / x; |
---|
1353 | real ret = atan(z); |
---|
1354 | if (x < real::R_0()) |
---|
1355 | ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI(); |
---|
1356 | return ret; |
---|
1357 | } |
---|
1358 | |
---|
1359 | template<> void real::hexprint() const |
---|
1360 | { |
---|
1361 | std::printf("%08x", m_signexp); |
---|
1362 | for (int i = 0; i < BIGITS; i++) |
---|
1363 | std::printf(" %08x", m_mantissa[i]); |
---|
1364 | } |
---|
1365 | |
---|
1366 | template<> void real::sprintf(char *str, int ndigits) const; |
---|
1367 | |
---|
1368 | template<> void real::print(int ndigits) const |
---|
1369 | { |
---|
1370 | char *buf = new char[ndigits + 32 + 10]; |
---|
1371 | real::sprintf(buf, ndigits); |
---|
1372 | std::printf("%s", buf); |
---|
1373 | delete[] buf; |
---|
1374 | } |
---|
1375 | |
---|
1376 | template<> void real::sprintf(char *str, int ndigits) const |
---|
1377 | { |
---|
1378 | real x = *this; |
---|
1379 | |
---|
1380 | if (x.m_signexp >> 31) |
---|
1381 | { |
---|
1382 | *str++ = '-'; |
---|
1383 | x = -x; |
---|
1384 | } |
---|
1385 | |
---|
1386 | if (!x) |
---|
1387 | { |
---|
1388 | std::strcpy(str, "0.0"); |
---|
1389 | return; |
---|
1390 | } |
---|
1391 | |
---|
1392 | /* Normalise x so that mantissa is in [1..9.999] */ |
---|
1393 | /* FIXME: better use int64_t when the cast is implemented */ |
---|
1394 | int exponent = ceil(log10(x)); |
---|
1395 | x /= pow(R_10(), (real)exponent); |
---|
1396 | |
---|
1397 | if (x < R_1()) |
---|
1398 | { |
---|
1399 | x *= R_10(); |
---|
1400 | exponent--; |
---|
1401 | } |
---|
1402 | |
---|
1403 | /* Print digits */ |
---|
1404 | for (int i = 0; i < ndigits; i++) |
---|
1405 | { |
---|
1406 | int digit = (int)floor(x); |
---|
1407 | *str++ = '0' + digit; |
---|
1408 | if (i == 0) |
---|
1409 | *str++ = '.'; |
---|
1410 | x -= real(digit); |
---|
1411 | x *= R_10(); |
---|
1412 | } |
---|
1413 | |
---|
1414 | /* Print exponent information */ |
---|
1415 | if (exponent) |
---|
1416 | str += std::sprintf(str, "e%c%i", |
---|
1417 | exponent >= 0 ? '+' : '-', lol::abs(exponent)); |
---|
1418 | |
---|
1419 | *str++ = '\0'; |
---|
1420 | } |
---|
1421 | |
---|
1422 | static real fast_pi() |
---|
1423 | { |
---|
1424 | /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */ |
---|
1425 | real ret = 0, x0 = 5, x1 = 239; |
---|
1426 | real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4; |
---|
1427 | |
---|
1428 | for (int i = 1; ; i += 2) |
---|
1429 | { |
---|
1430 | real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i); |
---|
1431 | if (newret == ret) |
---|
1432 | break; |
---|
1433 | ret = newret; |
---|
1434 | x0 *= m0; |
---|
1435 | x1 *= m1; |
---|
1436 | } |
---|
1437 | |
---|
1438 | return ret; |
---|
1439 | } |
---|
1440 | |
---|
1441 | } /* namespace lol */ |
---|
1442 | |
---|