1 | // |
---|
2 | // Lol Engine |
---|
3 | // |
---|
4 | // Copyright: (c) 2010-2011 Sam Hocevar <sam@hocevar.net> |
---|
5 | // This program is free software; you can redistribute it and/or |
---|
6 | // modify it under the terms of the Do What The Fuck You Want To |
---|
7 | // Public License, Version 2, as published by Sam Hocevar. See |
---|
8 | // http://sam.zoy.org/projects/COPYING.WTFPL for more details. |
---|
9 | // |
---|
10 | |
---|
11 | // |
---|
12 | // The Matrix classes |
---|
13 | // ------------------ |
---|
14 | // |
---|
15 | |
---|
16 | #if !defined __LOL_MATH_MATRIX_H__ |
---|
17 | #define __LOL_MATH_MATRIX_H__ |
---|
18 | |
---|
19 | #include <cmath> |
---|
20 | #if !defined __ANDROID__ |
---|
21 | # include <iostream> |
---|
22 | #endif |
---|
23 | |
---|
24 | namespace lol |
---|
25 | { |
---|
26 | |
---|
27 | class half; |
---|
28 | class real; |
---|
29 | |
---|
30 | #define VECTOR_TYPES(tname, suffix) \ |
---|
31 | template <typename T> struct tname; \ |
---|
32 | typedef tname<half> f16##suffix; \ |
---|
33 | typedef tname<float> suffix; \ |
---|
34 | typedef tname<double> f64##suffix; \ |
---|
35 | typedef tname<int8_t> i8##suffix; \ |
---|
36 | typedef tname<uint8_t> u8##suffix; \ |
---|
37 | typedef tname<int16_t> i16##suffix; \ |
---|
38 | typedef tname<uint16_t> u16##suffix; \ |
---|
39 | typedef tname<int32_t> i##suffix; \ |
---|
40 | typedef tname<uint32_t> u##suffix; \ |
---|
41 | typedef tname<int64_t> i64##suffix; \ |
---|
42 | typedef tname<uint64_t> u64##suffix; |
---|
43 | |
---|
44 | VECTOR_TYPES(Vec2, vec2) |
---|
45 | VECTOR_TYPES(Cmplx, cmplx) |
---|
46 | VECTOR_TYPES(Vec3, vec3) |
---|
47 | VECTOR_TYPES(Vec4, vec4) |
---|
48 | VECTOR_TYPES(Quat, quat) |
---|
49 | VECTOR_TYPES(Mat4, mat4) |
---|
50 | |
---|
51 | #define VECTOR_OP(op) \ |
---|
52 | inline type_t operator op(type_t const &val) const \ |
---|
53 | { \ |
---|
54 | type_t ret; \ |
---|
55 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
56 | ret[n] = (*this)[n] op val[n]; \ |
---|
57 | return ret; \ |
---|
58 | } \ |
---|
59 | \ |
---|
60 | inline type_t operator op##=(type_t const &val) \ |
---|
61 | { \ |
---|
62 | return *this = (*this) op val; \ |
---|
63 | } |
---|
64 | |
---|
65 | #define BOOL_OP(op, op2, ret) \ |
---|
66 | inline bool operator op(type_t const &val) const \ |
---|
67 | { \ |
---|
68 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
69 | if (!((*this)[n] op2 val[n])) \ |
---|
70 | return !ret; \ |
---|
71 | return ret; \ |
---|
72 | } |
---|
73 | |
---|
74 | #define SCALAR_OP(op) \ |
---|
75 | inline type_t operator op(T const &val) const \ |
---|
76 | { \ |
---|
77 | type_t ret; \ |
---|
78 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
79 | ret[n] = (*this)[n] op val; \ |
---|
80 | return ret; \ |
---|
81 | } \ |
---|
82 | \ |
---|
83 | inline type_t operator op##=(T const &val) \ |
---|
84 | { \ |
---|
85 | return *this = (*this) op val; \ |
---|
86 | } |
---|
87 | |
---|
88 | #define LINEAR_OPS() \ |
---|
89 | inline T& operator[](int n) { return *(&x + n); } \ |
---|
90 | inline T const& operator[](int n) const { return *(&x + n); } \ |
---|
91 | \ |
---|
92 | VECTOR_OP(-) \ |
---|
93 | VECTOR_OP(+) \ |
---|
94 | \ |
---|
95 | BOOL_OP(==, ==, true) \ |
---|
96 | BOOL_OP(!=, ==, false) \ |
---|
97 | \ |
---|
98 | SCALAR_OP(*) \ |
---|
99 | SCALAR_OP(/) \ |
---|
100 | \ |
---|
101 | inline type_t operator -() const \ |
---|
102 | { \ |
---|
103 | type_t ret; \ |
---|
104 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
105 | ret[n] = -(*this)[n]; \ |
---|
106 | return ret; \ |
---|
107 | } \ |
---|
108 | \ |
---|
109 | inline T sqlen() const \ |
---|
110 | { \ |
---|
111 | T acc = 0; \ |
---|
112 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
113 | acc += (*this)[n] * (*this)[n]; \ |
---|
114 | return acc; \ |
---|
115 | } \ |
---|
116 | \ |
---|
117 | inline double len() const \ |
---|
118 | { \ |
---|
119 | using namespace std; \ |
---|
120 | return sqrt((double)sqlen()); \ |
---|
121 | } \ |
---|
122 | \ |
---|
123 | void printf() const; |
---|
124 | |
---|
125 | #define COMPLEX_OPS() \ |
---|
126 | inline type_t operator *(type_t const &val) const \ |
---|
127 | { \ |
---|
128 | return type_t(x * val.x - y * val.y, x * val.y + y * val.x); \ |
---|
129 | } \ |
---|
130 | \ |
---|
131 | inline type_t operator *=(type_t const &val) \ |
---|
132 | { \ |
---|
133 | return *this = (*this) * val; \ |
---|
134 | } \ |
---|
135 | \ |
---|
136 | inline type_t operator ~() const \ |
---|
137 | { \ |
---|
138 | return type_t(x, -y); \ |
---|
139 | } \ |
---|
140 | \ |
---|
141 | inline T norm() const { return len(); } |
---|
142 | |
---|
143 | #define QUATERNION_OPS() \ |
---|
144 | inline type_t operator *(type_t const &val) const \ |
---|
145 | { \ |
---|
146 | type_t ret; \ |
---|
147 | Vec3<T> v1(x, y, z); \ |
---|
148 | Vec3<T> v2(val.x, val.y, val.z); \ |
---|
149 | Vec3<T> v3 = cross(v1, v2) + w * v2 + val.w * v1; \ |
---|
150 | ret.x = v3.x; \ |
---|
151 | ret.y = v3.y; \ |
---|
152 | ret.z = v3.z; \ |
---|
153 | ret.w = w * val.w - dot(v1, v2); \ |
---|
154 | return ret; \ |
---|
155 | } \ |
---|
156 | \ |
---|
157 | inline type_t operator *=(type_t const &val) \ |
---|
158 | { \ |
---|
159 | return *this = (*this) * val; \ |
---|
160 | } \ |
---|
161 | \ |
---|
162 | inline type_t operator ~() const \ |
---|
163 | { \ |
---|
164 | type_t ret; \ |
---|
165 | for (int n = 0; n < 3; n++) \ |
---|
166 | ret[n] = -(*this)[n]; \ |
---|
167 | ret[3] = (*this)[3]; \ |
---|
168 | return ret; \ |
---|
169 | } \ |
---|
170 | \ |
---|
171 | inline T norm() const { return sqlen(); } |
---|
172 | |
---|
173 | #define OTHER_OPS(tname) \ |
---|
174 | VECTOR_OP(*) \ |
---|
175 | VECTOR_OP(/) \ |
---|
176 | \ |
---|
177 | BOOL_OP(<=, <=, true) \ |
---|
178 | BOOL_OP(>=, >=, true) \ |
---|
179 | BOOL_OP(<, <, true) \ |
---|
180 | BOOL_OP(>, >, true) \ |
---|
181 | \ |
---|
182 | template<typename U> \ |
---|
183 | inline operator tname<U>() const \ |
---|
184 | { \ |
---|
185 | tname<U> ret; \ |
---|
186 | for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \ |
---|
187 | ret[n] = static_cast<U>((*this)[n]); \ |
---|
188 | return ret; \ |
---|
189 | } \ |
---|
190 | \ |
---|
191 | template<typename U> \ |
---|
192 | friend U dot(tname<U>, tname<U>); |
---|
193 | |
---|
194 | #define SWIZZLE2(e1, e2) \ |
---|
195 | inline Vec2<T> e1##e2() const \ |
---|
196 | { \ |
---|
197 | return Vec2<T>(this->e1, this->e2); \ |
---|
198 | } |
---|
199 | |
---|
200 | #define SWIZZLE3(e1, e2, e3) \ |
---|
201 | inline Vec3<T> e1##e2##e3() const \ |
---|
202 | { \ |
---|
203 | return Vec3<T>(this->e1, this->e2, this->e3); \ |
---|
204 | } |
---|
205 | |
---|
206 | #define SWIZZLE4(e1, e2, e3, e4) \ |
---|
207 | inline Vec4<T> e1##e2##e3##e4() const \ |
---|
208 | { \ |
---|
209 | return Vec4<T>(this->e1, this->e2, this->e3, this->e4); \ |
---|
210 | } |
---|
211 | |
---|
212 | #define SWIZZLE22(e1) \ |
---|
213 | SWIZZLE2(e1, x); SWIZZLE2(e1, y); |
---|
214 | #define SWIZZLE23(e1) \ |
---|
215 | SWIZZLE2(e1, x); SWIZZLE2(e1, y); SWIZZLE2(e1, z); |
---|
216 | #define SWIZZLE24(e1) \ |
---|
217 | SWIZZLE2(e1, x); SWIZZLE2(e1, y); SWIZZLE2(e1, z); SWIZZLE2(e1, w); |
---|
218 | |
---|
219 | #define SWIZZLE32(e1, e2) \ |
---|
220 | SWIZZLE3(e1, e2, x); SWIZZLE3(e1, e2, y); |
---|
221 | #define SWIZZLE322(e1) \ |
---|
222 | SWIZZLE32(e1, x); SWIZZLE32(e1, y); |
---|
223 | #define SWIZZLE33(e1, e2) \ |
---|
224 | SWIZZLE3(e1, e2, x); SWIZZLE3(e1, e2, y); SWIZZLE3(e1, e2, z); |
---|
225 | #define SWIZZLE333(e1) \ |
---|
226 | SWIZZLE33(e1, x); SWIZZLE33(e1, y); SWIZZLE33(e1, z); |
---|
227 | #define SWIZZLE34(e1, e2) \ |
---|
228 | SWIZZLE3(e1, e2, x); SWIZZLE3(e1, e2, y); \ |
---|
229 | SWIZZLE3(e1, e2, z); SWIZZLE3(e1, e2, w); |
---|
230 | #define SWIZZLE344(e1) \ |
---|
231 | SWIZZLE34(e1, x); SWIZZLE34(e1, y); \ |
---|
232 | SWIZZLE34(e1, z); SWIZZLE34(e1, w); |
---|
233 | |
---|
234 | #define SWIZZLE42(e1, e2, e3) \ |
---|
235 | SWIZZLE4(e1, e2, e3, x); SWIZZLE4(e1, e2, e3, y); |
---|
236 | #define SWIZZLE422(e1, e2) \ |
---|
237 | SWIZZLE42(e1, e2, x); SWIZZLE42(e1, e2, y); |
---|
238 | #define SWIZZLE4222(e1) \ |
---|
239 | SWIZZLE422(e1, x); SWIZZLE422(e1, y); |
---|
240 | #define SWIZZLE43(e1, e2, e3) \ |
---|
241 | SWIZZLE4(e1, e2, e3, x); SWIZZLE4(e1, e2, e3, y); SWIZZLE4(e1, e2, e3, z); |
---|
242 | #define SWIZZLE433(e1, e2) \ |
---|
243 | SWIZZLE43(e1, e2, x); SWIZZLE43(e1, e2, y); SWIZZLE43(e1, e2, z); |
---|
244 | #define SWIZZLE4333(e1) \ |
---|
245 | SWIZZLE433(e1, x); SWIZZLE433(e1, y); SWIZZLE433(e1, z); |
---|
246 | #define SWIZZLE44(e1, e2, e3) \ |
---|
247 | SWIZZLE4(e1, e2, e3, x); SWIZZLE4(e1, e2, e3, y); \ |
---|
248 | SWIZZLE4(e1, e2, e3, z); SWIZZLE4(e1, e2, e3, w); |
---|
249 | #define SWIZZLE444(e1, e2) \ |
---|
250 | SWIZZLE44(e1, e2, x); SWIZZLE44(e1, e2, y); \ |
---|
251 | SWIZZLE44(e1, e2, z); SWIZZLE44(e1, e2, w); |
---|
252 | #define SWIZZLE4444(e1) \ |
---|
253 | SWIZZLE444(e1, x); SWIZZLE444(e1, y); SWIZZLE444(e1, z); SWIZZLE444(e1, w); |
---|
254 | |
---|
255 | /* |
---|
256 | * 2-element vectors |
---|
257 | */ |
---|
258 | |
---|
259 | template <typename T> struct Vec2 |
---|
260 | { |
---|
261 | typedef Vec2<T> type_t; |
---|
262 | |
---|
263 | inline Vec2() { } |
---|
264 | explicit inline Vec2(T val) { x = y = val; } |
---|
265 | inline Vec2(T _x, T _y) { x = _x; y = _y; } |
---|
266 | |
---|
267 | LINEAR_OPS() |
---|
268 | OTHER_OPS(Vec2) |
---|
269 | |
---|
270 | SWIZZLE22(x); SWIZZLE22(y); |
---|
271 | SWIZZLE322(x); SWIZZLE322(y); |
---|
272 | SWIZZLE4222(x); SWIZZLE4222(y); |
---|
273 | |
---|
274 | #if !defined __ANDROID__ |
---|
275 | template<typename U> |
---|
276 | friend std::ostream &operator<<(std::ostream &stream, Vec2<U> const &v); |
---|
277 | #endif |
---|
278 | |
---|
279 | union { T x; T a; T i; }; |
---|
280 | union { T y; T b; T j; }; |
---|
281 | }; |
---|
282 | |
---|
283 | /* |
---|
284 | * 2-element complexes |
---|
285 | */ |
---|
286 | |
---|
287 | template <typename T> struct Cmplx |
---|
288 | { |
---|
289 | typedef Cmplx<T> type_t; |
---|
290 | |
---|
291 | inline Cmplx() { } |
---|
292 | inline Cmplx(T val) : x(val), y(0) { } |
---|
293 | inline Cmplx(T _x, T _y) : x(_x), y(_y) { } |
---|
294 | |
---|
295 | LINEAR_OPS() |
---|
296 | COMPLEX_OPS() |
---|
297 | |
---|
298 | #if !defined __ANDROID__ |
---|
299 | template<typename U> |
---|
300 | friend std::ostream &operator<<(std::ostream &stream, Cmplx<U> const &v); |
---|
301 | #endif |
---|
302 | |
---|
303 | T x, y; |
---|
304 | }; |
---|
305 | |
---|
306 | template<typename T> |
---|
307 | static inline Cmplx<T> re(Cmplx<T> const &val) |
---|
308 | { |
---|
309 | return ~val / val.sqlen(); |
---|
310 | } |
---|
311 | |
---|
312 | template<typename T> |
---|
313 | static inline Cmplx<T> operator /(T x, Cmplx<T> const &y) |
---|
314 | { |
---|
315 | return x * re(y); |
---|
316 | } |
---|
317 | |
---|
318 | template<typename T> |
---|
319 | static inline Cmplx<T> operator /(Cmplx<T> x, Cmplx<T> const &y) |
---|
320 | { |
---|
321 | return x * re(y); |
---|
322 | } |
---|
323 | |
---|
324 | /* |
---|
325 | * 3-element vectors |
---|
326 | */ |
---|
327 | |
---|
328 | template <typename T> struct Vec3 |
---|
329 | { |
---|
330 | typedef Vec3<T> type_t; |
---|
331 | |
---|
332 | inline Vec3() { } |
---|
333 | explicit inline Vec3(T val) { x = y = z = val; } |
---|
334 | inline Vec3(T _x, T _y, T _z) { x = _x; y = _y; z = _z; } |
---|
335 | inline Vec3(Vec2<T> _xy, T _z) { x = _xy.x; y = _xy.y; z = _z; } |
---|
336 | inline Vec3(T _x, Vec2<T> _yz) { x = _x; y = _yz.x; z = _yz.y; } |
---|
337 | |
---|
338 | LINEAR_OPS() |
---|
339 | OTHER_OPS(Vec3) |
---|
340 | |
---|
341 | SWIZZLE23(x); SWIZZLE23(y); SWIZZLE23(z); |
---|
342 | SWIZZLE333(x); SWIZZLE333(y); SWIZZLE333(z); |
---|
343 | SWIZZLE4333(x); SWIZZLE4333(y); SWIZZLE4333(z); |
---|
344 | |
---|
345 | template<typename U> |
---|
346 | friend Vec3<U> cross(Vec3<U>, Vec3<U>); |
---|
347 | |
---|
348 | #if !defined __ANDROID__ |
---|
349 | template<typename U> |
---|
350 | friend std::ostream &operator<<(std::ostream &stream, Vec3<U> const &v); |
---|
351 | #endif |
---|
352 | |
---|
353 | union { T x; T a; T i; }; |
---|
354 | union { T y; T b; T j; }; |
---|
355 | union { T z; T c; T k; }; |
---|
356 | }; |
---|
357 | |
---|
358 | /* |
---|
359 | * 4-element vectors |
---|
360 | */ |
---|
361 | |
---|
362 | template <typename T> struct Vec4 |
---|
363 | { |
---|
364 | typedef Vec4<T> type_t; |
---|
365 | |
---|
366 | inline Vec4() { } |
---|
367 | explicit inline Vec4(T val) : x(val), y(val), z(val), w(val) { } |
---|
368 | inline Vec4(T _x, T _y, T _z, T _w) : x(_x), y(_y), z(_z), w(_w) { } |
---|
369 | inline Vec4(Vec2<T> _xy, T _z, T _w) : x(_xy.x), y(_xy.y), z(_z), w(_w) { } |
---|
370 | inline Vec4(T _x, Vec2<T> _yz, T _w) : x(_x), y(_yz.x), z(_yz.y), w(_w) { } |
---|
371 | inline Vec4(T _x, T _y, Vec2<T> _zw) : x(_x), y(_y), z(_zw.x), w(_zw.y) { } |
---|
372 | inline Vec4(Vec2<T> _xy, Vec2<T> _zw) : x(_xy.x), y(_xy.y), z(_zw.x), w(_zw.y) { } |
---|
373 | inline Vec4(Vec3<T> _xyz, T _w) : x(_xyz.x), y(_xyz.y), z(_xyz.z), w(_w) { } |
---|
374 | inline Vec4(T _x, Vec3<T> _yzw) : x(_x), y(_yzw.x), z(_yzw.y), w(_yzw.z) { } |
---|
375 | |
---|
376 | LINEAR_OPS() |
---|
377 | OTHER_OPS(Vec4) |
---|
378 | |
---|
379 | SWIZZLE24(x); SWIZZLE24(y); SWIZZLE24(z); SWIZZLE24(w); |
---|
380 | SWIZZLE344(x); SWIZZLE344(y); SWIZZLE344(z); SWIZZLE344(w); |
---|
381 | SWIZZLE4444(x); SWIZZLE4444(y); SWIZZLE4444(z); SWIZZLE4444(w); |
---|
382 | |
---|
383 | #if !defined __ANDROID__ |
---|
384 | template<typename U> |
---|
385 | friend std::ostream &operator<<(std::ostream &stream, Vec4<U> const &v); |
---|
386 | #endif |
---|
387 | |
---|
388 | union { T x; T a; T i; }; |
---|
389 | union { T y; T b; T j; }; |
---|
390 | union { T z; T c; T k; }; |
---|
391 | union { T w; T d; T l; }; |
---|
392 | }; |
---|
393 | |
---|
394 | /* |
---|
395 | * 4-element quaternions |
---|
396 | */ |
---|
397 | |
---|
398 | template <typename T> struct Quat |
---|
399 | { |
---|
400 | typedef Quat<T> type_t; |
---|
401 | |
---|
402 | inline Quat() { } |
---|
403 | inline Quat(T val) : x(0), y(0), z(0), w(val) { } |
---|
404 | inline Quat(T _x, T _y, T _z, T _w) : x(_x), y(_y), z(_z), w(_w) { } |
---|
405 | |
---|
406 | Quat(Mat4<T> const &m); |
---|
407 | |
---|
408 | LINEAR_OPS() |
---|
409 | QUATERNION_OPS() |
---|
410 | |
---|
411 | #if !defined __ANDROID__ |
---|
412 | template<typename U> |
---|
413 | friend std::ostream &operator<<(std::ostream &stream, Quat<U> const &v); |
---|
414 | #endif |
---|
415 | |
---|
416 | T x, y, z, w; |
---|
417 | }; |
---|
418 | |
---|
419 | template<typename T> |
---|
420 | static inline Quat<T> re(Quat<T> const &val) |
---|
421 | { |
---|
422 | return ~val / val.norm(); |
---|
423 | } |
---|
424 | |
---|
425 | template<typename T> |
---|
426 | static inline Quat<T> operator /(T x, Quat<T> const &y) |
---|
427 | { |
---|
428 | return x * re(y); |
---|
429 | } |
---|
430 | |
---|
431 | template<typename T> |
---|
432 | static inline Quat<T> operator /(Quat<T> x, Quat<T> const &y) |
---|
433 | { |
---|
434 | return x * re(y); |
---|
435 | } |
---|
436 | |
---|
437 | /* |
---|
438 | * Common operators for all vector types, including quaternions |
---|
439 | */ |
---|
440 | |
---|
441 | #define SCALAR_GLOBAL(tname, op, U) \ |
---|
442 | template<typename T> \ |
---|
443 | static inline tname<U> operator op(U const &val, tname<T> const &that) \ |
---|
444 | { \ |
---|
445 | tname<U> ret; \ |
---|
446 | for (size_t n = 0; n < sizeof(that) / sizeof(that[0]); n++) \ |
---|
447 | ret[n] = val op that[n]; \ |
---|
448 | return ret; \ |
---|
449 | } |
---|
450 | |
---|
451 | #define SCALAR_GLOBAL2(tname, op) \ |
---|
452 | SCALAR_GLOBAL(tname, op, int) \ |
---|
453 | SCALAR_GLOBAL(tname, op, float) \ |
---|
454 | SCALAR_GLOBAL(tname, op, double) |
---|
455 | |
---|
456 | #define GLOBALS(tname) \ |
---|
457 | SCALAR_GLOBAL2(tname, *) \ |
---|
458 | \ |
---|
459 | template<typename T> \ |
---|
460 | static inline tname<T> normalize(tname<T> const &val) \ |
---|
461 | { \ |
---|
462 | T norm = val.len(); \ |
---|
463 | return norm ? val / norm : val * 0; \ |
---|
464 | } |
---|
465 | |
---|
466 | GLOBALS(Vec2) |
---|
467 | GLOBALS(Cmplx) |
---|
468 | GLOBALS(Vec3) |
---|
469 | GLOBALS(Vec4) |
---|
470 | GLOBALS(Quat) |
---|
471 | |
---|
472 | /* |
---|
473 | * 4×4-element matrices |
---|
474 | */ |
---|
475 | |
---|
476 | template <typename T> struct Mat4 |
---|
477 | { |
---|
478 | typedef Mat4<T> type_t; |
---|
479 | |
---|
480 | inline Mat4() { } |
---|
481 | explicit inline Mat4(T val) |
---|
482 | { |
---|
483 | for (int j = 0; j < 4; j++) |
---|
484 | for (int i = 0; i < 4; i++) |
---|
485 | v[i][j] = (i == j) ? val : 0; |
---|
486 | } |
---|
487 | inline Mat4(Vec4<T> v0, Vec4<T> v1, Vec4<T> v2, Vec4<T> v3) |
---|
488 | { |
---|
489 | v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; |
---|
490 | } |
---|
491 | |
---|
492 | inline Vec4<T>& operator[](int n) { return v[n]; } |
---|
493 | inline Vec4<T> const& operator[](int n) const { return v[n]; } |
---|
494 | |
---|
495 | T det() const; |
---|
496 | Mat4<T> invert() const; |
---|
497 | |
---|
498 | /* Helpers for transformation matrices */ |
---|
499 | static Mat4<T> translate(T x, T y, T z); |
---|
500 | static Mat4<T> translate(Vec3<T> v); |
---|
501 | static Mat4<T> rotate(T angle, T x, T y, T z); |
---|
502 | static Mat4<T> rotate(T angle, Vec3<T> v); |
---|
503 | static Mat4<T> rotate(Quat<T> q); |
---|
504 | |
---|
505 | static inline Mat4<T> translate(Mat4<T> mat, Vec3<T> v) |
---|
506 | { |
---|
507 | return translate(v) * mat; |
---|
508 | } |
---|
509 | |
---|
510 | static inline Mat4<T> rotate(Mat4<T> mat, T angle, Vec3<T> v) |
---|
511 | { |
---|
512 | return rotate(angle, v) * mat; |
---|
513 | } |
---|
514 | |
---|
515 | /* Helpers for view matrices */ |
---|
516 | static Mat4<T> lookat(Vec3<T> eye, Vec3<T> center, Vec3<T> up); |
---|
517 | |
---|
518 | /* Helpers for projection matrices */ |
---|
519 | static Mat4<T> ortho(T left, T right, T bottom, T top, T near, T far); |
---|
520 | static Mat4<T> frustum(T left, T right, T bottom, T top, T near, T far); |
---|
521 | static Mat4<T> perspective(T fov_y, T width, T height, T near, T far); |
---|
522 | |
---|
523 | void printf() const; |
---|
524 | |
---|
525 | #if !defined __ANDROID__ |
---|
526 | template<class U> |
---|
527 | friend std::ostream &operator<<(std::ostream &stream, Mat4<U> const &m); |
---|
528 | #endif |
---|
529 | |
---|
530 | inline Mat4<T> operator +(Mat4<T> const val) const |
---|
531 | { |
---|
532 | Mat4<T> ret; |
---|
533 | for (int j = 0; j < 4; j++) |
---|
534 | for (int i = 0; i < 4; i++) |
---|
535 | ret[i][j] = v[i][j] + val[i][j]; |
---|
536 | return ret; |
---|
537 | } |
---|
538 | |
---|
539 | inline Mat4<T> operator +=(Mat4<T> const val) |
---|
540 | { |
---|
541 | return *this = *this + val; |
---|
542 | } |
---|
543 | |
---|
544 | inline Mat4<T> operator -(Mat4<T> const val) const |
---|
545 | { |
---|
546 | Mat4<T> ret; |
---|
547 | for (int j = 0; j < 4; j++) |
---|
548 | for (int i = 0; i < 4; i++) |
---|
549 | ret[i][j] = v[i][j] - val[i][j]; |
---|
550 | return ret; |
---|
551 | } |
---|
552 | |
---|
553 | inline Mat4<T> operator -=(Mat4<T> const val) |
---|
554 | { |
---|
555 | return *this = *this - val; |
---|
556 | } |
---|
557 | |
---|
558 | inline Mat4<T> operator *(Mat4<T> const val) const |
---|
559 | { |
---|
560 | Mat4<T> ret; |
---|
561 | for (int j = 0; j < 4; j++) |
---|
562 | for (int i = 0; i < 4; i++) |
---|
563 | { |
---|
564 | T tmp = 0; |
---|
565 | for (int k = 0; k < 4; k++) |
---|
566 | tmp += v[k][j] * val[i][k]; |
---|
567 | ret[i][j] = tmp; |
---|
568 | } |
---|
569 | return ret; |
---|
570 | } |
---|
571 | |
---|
572 | inline Mat4<T> operator *=(Mat4<T> const val) |
---|
573 | { |
---|
574 | return *this = *this * val; |
---|
575 | } |
---|
576 | |
---|
577 | inline Vec4<T> operator *(Vec4<T> const val) const |
---|
578 | { |
---|
579 | Vec4<T> ret; |
---|
580 | for (int j = 0; j < 4; j++) |
---|
581 | { |
---|
582 | T tmp = 0; |
---|
583 | for (int i = 0; i < 4; i++) |
---|
584 | tmp += v[i][j] * val[i]; |
---|
585 | ret[j] = tmp; |
---|
586 | } |
---|
587 | return ret; |
---|
588 | } |
---|
589 | |
---|
590 | Vec4<T> v[4]; |
---|
591 | }; |
---|
592 | |
---|
593 | /* |
---|
594 | * Arbitrarily-sized square matrices; for now this only supports |
---|
595 | * naive inversion and is used for the Remez inversion method. |
---|
596 | */ |
---|
597 | |
---|
598 | template<int N, typename T> struct Mat |
---|
599 | { |
---|
600 | inline Mat<N, T>() {} |
---|
601 | |
---|
602 | Mat(T x) |
---|
603 | { |
---|
604 | for (int j = 0; j < N; j++) |
---|
605 | for (int i = 0; i < N; i++) |
---|
606 | if (i == j) |
---|
607 | m[i][j] = x; |
---|
608 | else |
---|
609 | m[i][j] = 0; |
---|
610 | } |
---|
611 | |
---|
612 | /* Naive matrix inversion */ |
---|
613 | Mat<N, T> inv() const |
---|
614 | { |
---|
615 | Mat a = *this, b((T)1); |
---|
616 | |
---|
617 | /* Inversion method: iterate through all columns and make sure |
---|
618 | * all the terms are 1 on the diagonal and 0 everywhere else */ |
---|
619 | for (int i = 0; i < N; i++) |
---|
620 | { |
---|
621 | /* If the expected coefficient is zero, add one of |
---|
622 | * the other lines. The first we meet will do. */ |
---|
623 | if (!a.m[i][i]) |
---|
624 | { |
---|
625 | for (int j = i + 1; j < N; j++) |
---|
626 | { |
---|
627 | if (!a.m[i][j]) |
---|
628 | continue; |
---|
629 | /* Add row j to row i */ |
---|
630 | for (int n = 0; n < N; n++) |
---|
631 | { |
---|
632 | a.m[n][i] += a.m[n][j]; |
---|
633 | b.m[n][i] += b.m[n][j]; |
---|
634 | } |
---|
635 | break; |
---|
636 | } |
---|
637 | } |
---|
638 | |
---|
639 | /* Now we know the diagonal term is non-zero. Get its inverse |
---|
640 | * and use that to nullify all other terms in the column */ |
---|
641 | T x = (T)1 / a.m[i][i]; |
---|
642 | for (int j = 0; j < N; j++) |
---|
643 | { |
---|
644 | if (j == i) |
---|
645 | continue; |
---|
646 | T mul = x * a.m[i][j]; |
---|
647 | for (int n = 0; n < N; n++) |
---|
648 | { |
---|
649 | a.m[n][j] -= mul * a.m[n][i]; |
---|
650 | b.m[n][j] -= mul * b.m[n][i]; |
---|
651 | } |
---|
652 | } |
---|
653 | |
---|
654 | /* Finally, ensure the diagonal term is 1 */ |
---|
655 | for (int n = 0; n < N; n++) |
---|
656 | { |
---|
657 | a.m[n][i] *= x; |
---|
658 | b.m[n][i] *= x; |
---|
659 | } |
---|
660 | } |
---|
661 | |
---|
662 | return b; |
---|
663 | } |
---|
664 | |
---|
665 | T m[N][N]; |
---|
666 | }; |
---|
667 | |
---|
668 | } /* namespace lol */ |
---|
669 | |
---|
670 | #endif // __LOL_MATH_MATRIX_H__ |
---|
671 | |
---|